

Introduction to the 3D-HiPMAS project

Pilot Factory for <u>3D High</u> Precision <u>MID Assemblies</u>

nteora

licro Technology

Logo

A European project supported through the Seventh Frame Programme under the "Factories of the Future" initiative. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 314293

General project data

Title: Pilot Factory for <u>3D High Precision MID As</u>semblies (3D-HiPMAS)

Call: FoF.NMP.2012-5

High precision production technologies for high quality 3D micro-parts

 Period:
 01/10/2012 – 30/09/2015 (36 month)

 Budget:
 5,350,276,20€

 Grant:
 3,499,600,00€

 Partners:
 12

 Coordinator:
 HSG-IMAT

Content :

3

Logo

partenaire

State of the art

HiPMAS

- **Objectives**
- Building Blocks Beyond state of the art
- **Resources Budget**
- Impacts
- Dissemination

Subject : MID based 3D high quality, high precision 3D micro-parts

3D-plastic micro-part 3D-MID 3D-Conductive tracks **Process Flow:** 3D plastics micro-parts conductive tracks 3D-HiPMAS: towards 3D high precision micro MID assemblies for new market opportunities Energy Automotive Medical Telecom

- components assembly
- online monitoring / quality inspection

 \rightarrow Huge Potential for new **Products and Production** in Europe!

Logo

partenaire

SoA : 2-shot MID Technology

Injection mould first shot

Injection mould second shot

Full-build electroless copper

Process Flow of 2-shot MID

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 314293

Pressure Sensor Assembly: •2-shot MID saves ~50% of space •2-shot MID saves ~ 30% of cost

SoA : Laser Direct Structuring MID Technology (LDS)

Switch for Motor Cycle Handlebar

Process Flow of LDS MID

SoA : Electroless Metal Deposition for 2-shot and LDS MIDs

2-Shot MID at 600 µm pitch

LDS MID at 300 µm pitch

Lateral metal over grow in 2-Shot MID

Lateral metal over grow in LDS MID

Logo partenaire

SoA : Assembling of Electronic Devices of 3D-MIDs

Motor cycle handlebar switch

Light sensor

3D chip assembly with tilt of MID

Fabrication line

Light sensor for car environmental control

10

State of the art bottlenecks to be addressed :

- Plastics Material
- 2-Shot moulding process
- Laser technology
- Electroless metal deposition
- Assembly of electronic components on 3D bodies
- In-line monitoring of 3D micro-parts
- Experience of industries along the MID assemblies process chain
- Production cost

Logo

partenaire

Material consumption and environmental protection

Overall project objectives :

- **3D high precision 2-shot plastics micro-parts** with size reduction for conductive tracks from SoA 300µm to 150µm
- 3D high definition conductive tracks by new generation of Laser Direct Structuring and plating technologies reduced from SoA 300 μm pitch in 3D (150 μm in 2D) to 150 μm pitch in 3D (75 μm in 2D)
- **3D precision electronic components assembly** with novel overall capability of positioning and alignment accuracy below 10µm compared to SoA 20µm
- **3D reliable and robust online monitoring and quality inspection system,** including quality management, and novel in-line 3D X-Ray tomography.
- Integrating these 4 technologies to launch the future EU pilot factory to save more than 50% of today's production costs
- Assessment of the pilot factory through 4 advanced products in the energy, medical, communication and transport applications.

Logo partenaire

Beyond SoA : 3D system carrier

New plastic materials with cost kept at present level:

higher performance and precision 3D system carriers
 thermal expansion reduced by 30 %

New additives at size below 1 µm:

enable LDS activation and plating phasesgood stability and perfect cohesion with the polymer matrix

Enhanced precision 2-shot molded 3D micro-parts:

reduced wall thickness, line width and tolerances
 using rapid heat&cool, vacuum and compression moulding

Improved processing performance:

reduction of material consumption by wall thickness and part size of 20%
 reduction of mould set up phase and time-to-market by 10 %
 improved precision by 50%

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 314293

Beyond SoA : 3D metal patterning

Improving laser machinery:

Reducing laser spot size from 60 µm to below 25 µm
 Improving positioning accuracy from 10-20 µm (3 sigma) to 5-7 µm
 Enhancing Scanning velocity for same throughput (mm²/s)
 Reducing machining cost by 50%
 Image processing for online process control

Improved metal plating for LDS and 2-shot (roughness, adhesion):

Reduced size of metal lines for LDS (100%) and 2-Shot MID
 Cleaning processes for 50% less CO₂ or chemicals consumption
 Replace Ni-P/Au by Ag for less chemicals / metals consumption
 More pieces per batch due to smaller device size (30 - 50 %)

Reduced cost:

laser machining ~50 %
metal deposition ~35 – 60 %

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 314293

Beyond SoA : 3D high precision assembling

Improving precision and 3D capability of assembling machinery:

Develop 3-D manipulation to work on a globe and around it to transfer parts, move parts, rotate parts and more

➢Increase z-stroke from 45 mm to 150 mm for more complex MID

Reduce cycle time at increased z-stroke while maintaining precision and accuracy

> Develop new sorting process for loose material parts to work piece carriers

Improving joining processes for new fine pitch MID:

Establish new laser soldering capabilities for 3-D connections

- Develop joining processes for "bare dies"
- Develop joining processes for SMD
- > Develop joining processes for micromechanical/micro optical components
- Develop automatic loading options for complex MID structures

>Implement image processing for real time control of assembly and dispensing results and reevaluate automatic error compensation.

Beyond SoA : Advanced product and process control

Advance software platform for engineers for 3D-µ-MIDs products:

MID/3D-MID domain-specific language specification
 Software environments dedicated to 3D-MID/MID process engineering

Relevant online process and product quality inspection strategy for 3D-µ-MIDs products

In-line non destructive 3 dimensional metrology tool:

enabling feedback on production process / quality achieved
 innovative concept of X-Ray tomograph
 Radio Synthetic Control (RSC) for non destructive 3 D analysis of complex

volumes analysis of material content using real time X-ray imaging acquisition

Reduced overheads in reconstructing 3D data sets by 80-90%

Demonstrator 1 : 3D micro fuel cell

Beyond SoA: Integration of a.m.a.p of control and safety parts into MID / package > control electronics > sensors
> piezoelectric actuators for valves / circuit-breakers

Miniaturization:

➢ lower number of parts

- ≻smaller size
- ➤lower power consumption
- ➤reduced cost by 60% for control and safety part

Demonstrator 2 : 3D micro hearing aids

Phonak BTE type hearing aid

Beyond SoA:
Integration of antenna structures
3D integration of electronic components
Integration of contact elements
Evaluation of hard/soft material combination compatible to 3D MID process

Demonstrator 3 : 3D micro switches

Beyond SoA: Cost reduction for new market opportunity (~30%)

Improved assembly process
 Less higher precision of parts (15 to 8)
 Chance of automation
 improved reliability

Improved RF performances

new MID based design
 New RF line design for improved the frequency level (8 to 12 GHz)
 Improved harsch environment capability

Logo partenaire

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 314293

Demonstrator 4 : MID based pressure sensor

Thanks to MIDs, this very robust pressure sensor based on a membrane / capacitive principle with an integrated temperature sensor display a smaller package volume and will provide a cost-effective solution for many sensor applications.

Logo partenaire

Assessment of pilot line performance during demonstration :

- Reduction of plastics materials input
- >Reduction of energy consumption in materials compounding, injection
- moulding, metal deposition and laser machining
- ➢ Reduction of CO₂ consumption and/or chemicals in cleaning
- Reduction of consumption of process chemicals and metals in electroless
- plating (Au will be replaced to 100%)
- ≻Improvement of **precision**
- ≻Improvement of **yield**

Planned resources

Participant Nr	Organization short name	Organization country	RTD	DEMO	MGT	отн	Total	Requested EU contribution
1	HSG-IMAT	DE	599.504	131.016	171.488	35.126	937.134	721.750
2	LPKF	DE	507.576	60.576	0	16.032	584.184	300.108
3	PSL	UK	396.349	184.794	1.500	20.283	602.926	411.441
4	HAECKER	DE	372.307	81.692	0	29.419	483.418	349.495
5	RADIALL	FR	171.618	249.034	0	18.577	439.229	228.903
6	PRAGMA	FR	46.930	120.192	0	14.178	181.300	109.471
7	PHONAK	СН	65.370	238.484	0	11.706	315.560	163.633
8	PEP	FR	506.000	142.600	1.500	32.800	682.900	485.100
9	CEA	FR	385.198	45.742	0	13.297	444.237	325.066
10	PLASTIPOLIS	FR	0	0	0	113.076	113.076	113.076
11	ENSINGER	DE	173.155	30.014	0	8.616	211.785	110.200
12	RAYCE	FR	79.978	266.362	0	8.187	354.527	181.357
	TOTAL		3.303.985	1.550.506	174.488	321.297	5.350.276	3.499.600

Budget share

	Budget [€]	Share [%]	
Personal	4094032	76,52	
Consumable			
Equipment	1205444	22,53	
Travel	1205444		
Other			
Subcontracting	50800	0,95	

Grant/Total Budget : 64% Management Budget: 5% 2% LARGE 40% SME 23%

Logo partenaire

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 314293

OTH

3D-HiPMAS impacts :

Provide the industry with a pilot factory able to offer customised solutions in terms of technical and economical performances

•Supply chain:

Consultation of companies on the Pilot Factory (precision, products size, shape, functions, materials, volume of production, time-to-market, product price, production costs ...).

Studies on efficient production for manufacturing of MID components

Set up of fabrication lines within Europe

 Open the way to new future products not possible to be realized using SoA technology:

- ≻Health care
- ➢Mobility
- ≻Communication
- ≻Energy

Dissemination of the 3D-HiPMAS pilot line :

FILE Programme (FP7/2007-2013) under grant agreement n° 314293

Dissemination of the results and IP :

• Communication:

Website, brochure, press releases, conferences journals

• Pilotline:

Consulting, training courses, pilot production, production services...

Satellite Group:

Direct contact to interested industries

• Workshop with contest: Case studies, pilot production

THANK YOU FOR

YOUR ATTENTION

Logo

Micro Technology

ntegrati

A European project supported through the Seventh Frame Programme under the "Factories of the Future" initiative. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 314293